PlasmaCap EBA[®]: An Innovative Method of Isolating Plasma Proteins from Human Plasma

David Miller, BASc, Gillian Vanderlee BEng, MASc, Olivier Vaute, PhD, MBA, Mark Krause, BSc, MBA

Background and Rationale

- Intravenous immunoglobulin (IVIG) and subcutaneous IG (SCIG) preparations are comprised of pooled immunoglobulin G (IgG) antibodies from the plasma of thousands of donors and were initially used as an IgG replacement therapy in immunocompromised patients.
- Increasingly, IG at high doses (1,000 2,400 mg/kg) is also used as a treatment for a variety of autoimmune and inflammatory conditions; although some autoinflammatory disorders respond to a single course of IG therapy, the majority of patients require long-term, regular infusions.¹
- Shortages of IVIG and SCIG continue to be reported globally,²⁻⁴ and demand for IVIG and SCIG has grown continuously since the 1980s.⁵
- The drivers for increased demand are multifactorial but are largely due to expanded indications requiring high-dose IG.⁶⁻⁸
- The manufacturing of IG is conducted by a fractionation methodology developed in the United States (US) in the 1940s known as the Cohn process or cold ethanol fractionation.⁹
- A novel protein extraction method, utilizing chromatography as the primary separation and purification process, has been developed using expanded bed adsorption (EBA) chromatography to selectively capture proteins in their native state.
- PlasmaCap IG (10% liquid formulation IVIG) is the first plasma derived product manufactured using this proprietary process.

Materials and Methods

- Evolve's PlasmaCap EBA[®] platform consists of a series of consecutive columns which bind a target protein, or a group of proteins, in their native state directly from cryo-poor plasma (Figure 1).
- Target protein(s) captured during each step of the PlasmaCap EBA[®] backbone can be eluted at a neutral pH in a medium ionic strength aqueous buffer (see Figure 1); the eluate can be concentrated, sterile filtered, and frozen for further purification, or purified immediately without an intermediate hold step.
- The five (5) key steps of the PlasmaCap EBA[®] process are made possible by functionalized high-density tungsten-carbide agarose beads which are suspended by upward flow (Figure 2)(Table 1).
- The upward flow results in a dynamic expanded bed which permits unclarified plasma to flow through the column with no risk of plugging, and without the need for aggressive cleaning or repacking to achieve a high cycle life.
- The PlasmaCap EBA[®] process was evaluated during Evolve's clinical campaign for product quality, yield, and scalability.
- In terms of scalability of the manufacturing process, it's important to note the rapid expansion of production capabilities from the laboratoryscale (LS) lots to the clinical-scale (CS) lots.

Materials and Methods (continued)

AAT=alpha-1 antitrypsin; C1-INH=C1 esterase inhibitor; HAS=human serum albumin; IgG=immunoglobulin G; PCC=prothrombin complex concentrate.

Figure 2: The Five (5) Key Steps of PlasmaCap EBA[®] Chromatography

Figure 1: PlasmaCap EBA[®] Technology Backbone/Capture Steps and Process Flow Diagram

ilibrate ntinues until pH ctivity reach the apture of the ein(s).	Load Unclarified plasma is loaded.	Wash Unbound proteins are washed.	Elute Target proteins are eluted.

Table 1: Summary of PlasmaCap EBA[®] Immunoglobulin Process Steps

Operation	Summary
Cryo-precipitation and recovery of cryo-	Temperature controlled thaw
poor plasma	achieve selective precipitation
Expanded bed adsorption (EBA)	EBA chromatography captur
prothrombin complex concentrate (PCC)	remove PCC from cryo-poor
capture step	
Depth filtration	Depth filtration to improve pe
	buffer-exchange step.
pH/conductivity adjustment	Buffer exchange by tangenti
	by pH adjustment.
EBA immunoglobulin (IG) capture step	EBA capture chromatograph
Low pH viral inactivation (1 of 3 viral	First viral reduction step: low
inactivation steps) with sodium caprylate	of caprylate followed by dep
pH/conductivity adjustment	Buffer exchange by TFF follo
Anion exchange	Polishing chromatography w
	chromatography.

Results **Product Quality**

- PlasmaCap EBA[®] technology provides several advantages over the Cohn/precipitation process.
- Key benefits are related to product quality such as lower aggregates, which are associated with increased tolerability, as well as very low levels of impurities such as Factor XIa, which may decrease the potential for thromboembolic events.
- Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that LS and CS lots are both highly purified.
- Specific critical quality attributes of PlasmaCap IG product produced at LS and CS are listed in Table 2.

Product Yield and Scalability

- In the Cohn/precipitation process, it's estimated that 40% to 50% of IG is lost in the non-IG supernatants or are coprecipitated with impurities.
- Data collected during clinical manufacturing of PlasmaCap IG (using Source plasma) has shown an average yield of $67.0\% \pm 5.1$.
- The PlasmaCap EBA[®] process is expected to have the same or better yield and purity of IVIG at commercial scale production with automation and improved process flows.

Presented at the: 2022 Immunoglobulin National Society (IgNS) Annual Meeting, September 29 – October 2

followed by centrifugation to on and remove clotting factors. ire step designed to bind and plasma. erformance during subsequent tial flow filtration (TFF) followed ny to bind and isolate IG. v pH incubation in the presence oth filtration and sterile filtration. owed by sterile filtration. vith packed bed anion exchange

Table 2: Comparison of Critical Quality Characteristics for Clinical Scale (CS) and Laboratory Scale (LS) Batches

Parameter	Limit	CS Batches (N=13	LS Batches (N=3)
Total protein	100 ± 10 g/L	100	101
Total immunoglobulin G (lgG)	100 ± 10 g/L	103	101
IgG purity	≥96%	96.9%	99.6
Molecular size	Mono- and dimeric ≥90%	99.1%	99.9
	Polymeric<2%	0.1%	<0.1
	Fragment <3%	0.7%	<0.1
IgG subclasses	lgG1 ≥55%	68%	63
	lgG2 ≥20%	28%	32
	lgG3 ≥1.5%	2.0%	3.3
	lgG4 ≥1.5%	2.2%	3.5
Immunoglobulin A (IgA)	≤100 µg/mL	17	15
Immunoglobulin M (IgM)	≤20 µg/mL	1	<0.2
Apolipoprotein H	≤1.00 mg/mL	0.4	0.1
Fibrinogen	≤500 ng/mL	0.8	0.6
Thrombin generation assay (TGA) (Factor Xla)	≤1.0 mU/mL	0.1	Not applicable (n/a)
Protein kinase A (PKA)	Not more than (NMT) 35 IU/mL 3% IgG	0.2	n/a
Anticomplement activity (ACA)	≤1 CH50 U/mg IgG	0.7	n/a
Osmolality	280 ± 15 mOs/kg	280	274
Anti-measles antibodies	Not less than (NLT) 0.6x the antibody level of NIH reference measles immune globulin	0.8	n/a
Anti-diphtheria antibodies	NLT 2U of diphtheria antitoxin/mL	10	n/a
Anti-poliomyelitis antibodies	Type 2: NLT 0.25 x reference lot Type 1: NLT 0.6 reference lot	1	n/a
Constand fragment (Fc) function	≥60% of reference material (15 and 30 mg)	102/110	n/a
Endotoxin	≤1.0 EU/mL	≤0.5	n/a

Figure 3: PlasmaCap IG Characteristics/Potential Benefits

Characteristic	Differentiators / Potential Benefits
Physiological Osmolality	 May result in higher tolerability and lower episodes of thromboembolic events.
Ultra Low Aggregates	 Low levels of aggregates may result in higher tolerability.
Low Levels of Factor XIa	 May result in higher tolerability and lower episodes of thromboembolic events.
Physiologic Sialyation	 May result in potential improved efficacy through T cell independent anti-infective mechanisms and broad anti-inflammatory mechanisms.
High Levels of Monomers and Dimers	 May result in improved functional activity and higher tolerability.
Low Levels of Immunogoblin A (IgA)	 May result in higher tolerability for patients with known sensitivity to IgA.

References

1. Perez EE, et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immunol. 2017;139:S1-46. 2. United States Food and Drug Administration (FDA) Information About Immunoglobulin Shortage. Available at: https://www.fda.gov/vaccines-bloodbiologics/safety-availability-biologics/information-about-immune-globulin-human-product-shortage. 3. Farrugia A, et al. The growing importance of achieving national self-sufficiency in immunoglobulin in Italy. The emergence of a national imperative. Blood Transfus. 2019;17:449-458. 4. Edington HJ, et al. Dealing with a critical national shortage - approaches to triaging immune globulin supply in pediatric hematology and oncology. Pediatr Blood Cancer. 2020;67:e28260. 5. The Marketing Research Bureau. Introduction to the Plasma Industry [internet]. Accessed March 14, 2021. 6 Navarro RP, et al. Considerations for the optimal use of immunoglobulin. Ann J Manag Care. 2012;18:S67-S78. 7. Kimyongur RP, et al. The use of IVIg in the treatment of inflammatory polyneuropathies and myasthenia gravis at the Walton Centre. J R Coll Physicians Edinb. 2019;49:5-11. 8. National Blood Authority Australia NBA). Objective 1. Secure the supply of blood and blood products. Available at: https://www.blood.gov.au/pubs/1819report/part-2-annual-performance/objective-1-secure-supplyblood-and-blood-products.html. 9. Cohn EJ, et al. Preparation and properties of serum plasma proteins. IV. A system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids. J Am Chem Soc. 1946;62:459-75.

Acknowledgments

Evolve Biologics would like to thank Lauren Holliday for assistance with illustrations and Shireen Dunwoody of Dunwoody Consulting for assistance with poster design and development.

Results (continued)

Conclusions

 Shortages of immunoglobulin continue to be reported globally and demand has grown over time creating a need for improved plasma fractionation methods to provide higher yields without compromising purity and efficacy.

• A novel protein extraction method, utilizing expanded bed adsorption (EBA) chromatography, has been developed (PlasmaCap EBA®) that utilizes high-density tungsten-carbide agarose beads, suspended by upward flow, to isolate proteins.

 The PlasmaCap EBA[®] platform was used to successfully develop PlasmaCap IG (10% liquid formulation IVIG) for clinical investigation with proven product efficacy, safety, purity, and scalability, at a high yield.

